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Abstract

This paper addresses exact, transient heat-conduction solutions in two-dimensional rectangles heated at a boundary. The standard
method of separation of variables (SOV) solution has two parts, steady-state (or quasi-steady) and complementary transient. The
steady-state component frequently converges slowly at the heated surface, which is usually the one of greatest interest. New procedures
are given to construct a steady solution in the form of a single summation, one having eigenvalues in the homogeneous direction (yielding
the same result as the standard SOV solution) and the other having eigenvalues in the non-homogeneous direction (called the non-stan-
dard solution). The non-standard solutions have much better convergence behavior at and near the heated boundary than the standard
forms. Examples are given.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Problem description

Exact transient heat conduction solutions in Cartesian
coordinates are important for many reasons. One is for
the verification of large finite element and finite control vol-
ume codes [1]. The insight that these exact solutions pro-
vide for modeling simple geometries is also important.
Unfortunately, the standard steady-state separation of
variables (SOV) component of these solutions may be
poorly convergent at the heated surface (the one of greatest
interest) for the temperature and even more so for the heat
flux. In this paper, steady-state solutions are derived that
are much more accurate and better behaved on the heated
surface than the standard SOV solutions.

In the standard SOV solution for a transient heat con-
duction problem in a rectangle with a non-homogeneous
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boundary condition, the steady-state component of the
solution is constructed from an eigenvalue problem in the
homogeneous boundary condition direction. The non-stan-
dard solution uses eigenvalues in the non-homogeneous
direction. For a 2D problem, the standard steady-state
SOV solution is a single summation. The long-cotime
Green’s function (GF) solution produces a double-summa-
tion for both the steady-state and transient components of
the solution. (The cotime is given by t � s and the long
cotime GF is derived using SOV.) The steady-state dou-
ble-summation can be reduced to two different single-sum-
mations. One is the standard SOV solution which has
eigenvalues in the homogeneous direction. The non-stan-
dard solution has eigenvalues in the non-homogeneous
direction; it converges much more rapidly at the heated
surface than the standard solution.

The steady-state double summation solution discussed
in this paper is reduced to a single summation by replacing
one of the summations by an algebraic identity. Two gen-
eral methods of deriving these fundamental algebraic iden-
tities are given and many identities are tabulated.
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Nomenclature

B boundary condition modifier, used in case iden-
tification number system

Bi Biot number
Cm bmW/L
Cn gnL/W
D defined by Eq. (15)
G Green’s function (m�1, for 1D form)
h heat transfer coefficient (W/m2 �C)
H1 q1 for boundary conditions of the 2nd kind,

h1T1 for boundary conditions of the 3rd kind
k thermal conductivity (W/m �C)
L length in x-direction (m)
q1 prescribed heat flux at a boundary (W/m2)
S function defined by Eq. (41)
t time (s)
T temperature �C
W length in the y-direction (m)
x, y spatial variables (m)
X, Y eigenfunctions and also used in the numbering

system

Greek symbols

a thermal diffusivity (m2/s)
b eigenvalue in the x-direction
d(�) Dirac delta function
g eigenvalue in the y-direction
h algebraic form of summation, Eq. (13)
/ algebraic form of summation, Eq. (26)
s convolution time variable (s)

Subscripts
j subscript 1 denotes at x (or y) = 0, subscript 2

denotes x = L

m, n counting integers for eigenvalues in the x- and
y-directions, respectively

Superscript

+ denotes a dimensionless quantity
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1.2. Literature review

Appropriate heat conduction literature is discussed next
in the areas of SOV solutions, alternate solutions, and the
uses of alternate solutions. The standard SOV procedure
for steady-state 2D (and 3D) heat conduction is the one
currently recommended in graduate heat conduction
books. For example, Arpaci [2], Ozisik [3], Kakac and
Yener [4] and Gebhart [5] clearly state that this is the
proper way to solve these problems. Incropera and DeWitt
[6] appear to be in agreement with these authors.

Alternate solutions have been known for many years [7].
The non-standard results can be constructed with several
methods, including the variation of parameters method
[8] and the steady-state GF method [9,10]. A technique
used by applied mathematicians ‘‘simply” subtracts the
1D solution in the non-homogeneous direction. This is a
powerful technique but it usually transforms the problem
from a single boundary value problem to two or more
boundary value problems. The procedure may not be obvi-
ous, however; an example of such a derivation is the one
used to obtain Eqs. (7a,b) in [1].

The time-partitioning method, which was developed for
transient problems, can also be used to construct a rapidly-
convergent steady-state temperature solution (in the limit
as time becomes large). The time-partitioning method
involves both large-cotime series-form GF and small-
cotime series-form GF, each of which converges well in
their respective time range [12, Chapter 5, 13–15]. In con-
trast, the new procedure discussed in this paper is easier
to implement than the time-partitioning method, in part
because only the long-cotime GF is used. As presented in
[11] the time-partitioning method for 2D and 3D problems
also involves a numerical integration of the small cotime
GFs, which is a disadvantage. Even so, it may be more
numerically efficient than the proposed method; that
remains to be investigated. However, numerical efficiency
may not be important with the present computers but accu-
racy must be assured for verification.

A number of other techniques have been employed for
exact solution of heat conduction problems. De Monte
[16,17] has written a number of papers on multi-dimen-
sional multi-layer materials and is a proponent of the ‘‘nat-
ural” analytic method. Lu and co-authors [18,19] have also
written a number of papers for multi-layer slabs and cylin-
ders; in [18] they approximate time-varying boundary con-
ditions with temporal sinusoids. Another type of heat
conduction problem involves semi-infinite geometries [20].
The number of analytical heat conduction solution papers
is exceeded by the papers on inverse heat conduction;
examples are the recent papers [21,22].

There are a number of uses of alternate forms of heat
conduction solutions. A primary reason is that heat con-
duction solutions are not uniformly convergent. As men-
tioned above, the standard SOV approach produces
series solutions that converge very slowly at the location
of greatest interest, namely, near the surface with the
non-homogeneous condition [1]. Where the standard solu-
tion converges slowly, an alternate solution may converge
many times faster [1,9,13]. Another use of alternate solu-
tions is intrinsic verification [11] which is a basic feature
of the time-partitioning method. When the partition time
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is varied over acceptable cotimes, the same numerical val-
ues (to as many significant figures as desired) are obtained.
This provides a very powerful means of verification. The
proposed herein method also provides intrinsic verification
by using multiple solutions which can then be compared
[11]. However, the proposed procedure does not have a sin-
gle parameter analogous to the partition time, which can be
continuously varied.
1.3. Outline

This paper is divided into several sections. The problem is
formulated in Section 2 for the transient heat conduction in
the rectangle heated at the x = 0 surface, with the GF solu-
tion given in the form of a double-summation (which can be
extended to the parallelepiped with a triple summation).
From the double-summation, two alternate single-sum solu-
tions are constructed by studying a one-dimensional tran-
sient problem, first along the y-direction (homogeneous
direction, Section 3), and second along the x-direction
(non-homogeneous direction, Section 4). The first of these,
which we call non-standard, reduces the double summation
to a single summation having eigenvalues in the x-direction
(non-homogeneous direction). The second way, called the
standard solution, produces a result which has the eigen-
values in the y-direction (homogeneous direction). (To
remember this, note that the non-standard procedure pro-
duces a 1D summation with eigenvalues in the non-homoge-
neous direction.) Section 5 provides some numerical results
and a comparison of the methods. A discussion in Section 6
is also given to show that the new method of removing a
summation is equivalent to using a steady-state, 1D, fin-type
GF.
2. Problem formulation

An example is given to illustrate reducing the double
summations to a single summation in the steady-state por-
tion of the GF solution in transient heat conduction in a
homogeneous rectangle. (The same principle applies to
reducing a triple summation in a 3D problem to a double
summation.) Consider the general transient heat conduc-
tion problem denoted XIJB(y-)0YKLB00T0 (see [12, Chap-
ter 2] for a full discussion of the numbering system for heat
conduction.). This problem has a single non-homogeneous
term at boundary x = 0; it can be prescribed temperature,
prescribed heat flux, and prescribed convection conditions,
denoted the first, second and third kinds of boundary
conditions, respectively. Specifically, the I, J, K and L val-
ues can be 1, 2 or 3 corresponding to the boundary condi-
tion kinds. This designation leads in part to the numbering
system. A general variation in y-direction of the non-
homogeneous boundary condition at the x = 0 face is
permitted.

A mathematical statement of the above linear heat con-
duction problem is
o2T
ox2
þ o2T

oy2
¼ 1

a
oT
ot
; 0< x < L; 0< y < W ; t > 0

ð1aÞ
�k oT

ox ð0; y; tÞ ¼ q1f ðyÞ or h1½T1f ðyÞ � T ð0; y; tÞ�
Boundary conditions at x¼ L; y ¼ 0; W are homogeneous

Initial condition: T ðx; y;0Þ ¼ 0

ð1bÞ
Using GFs the solution can be written as

T ðx; y; tÞ ¼ a
k

H 1

Z t

s¼0

GXIJ ðx; 0; t � sÞ

�
Z W

y0¼0

f ðy0ÞGYKLðy; y 0; t � sÞdy 0 ds ð2Þ

In the following discussion, for I = 2 (that is, boundary
condition of the second kind), H1 = q1; for I = 3 (boundary
condition of the third kind), H 1 ¼ h1T N. (For I = 1
(boundary condition of the first kind), the following devel-
opment is more affected: replace (H1/k)GX1J by T1oGX1J/
ox0.) Let the long cotime GFs be used; they are

GXIJ ðx; 0; t � sÞ ¼
X1
m¼0

e�b2
m

aðt�sÞ
L2

Nx;m
X mðxÞX mð0Þ ð3aÞ

GYKLðy; y0; t � sÞ ¼
X1
n¼0

e�g2
n
aðt�sÞ

W 2

Ny;n
Y nðyÞY nðy 0Þ ð3bÞ

where Xm and Yn are eigenfunctions, and Nx and Ny are
norms, constructed from Fourier series, with the precise
form determined by the specific boundary conditions pres-
ent. See [12, p. 99] for a complete list. Performing the inte-
grations in Eq. (2) yields

T ðx; y; tÞ ¼ 1

k
H 1

X1
m¼0

X1
n¼0

� X mðxÞX mð0ÞY nðyÞIY n

Nx;mN y;n
bm
L

� �2 þ gn
W

� �2
h i 1� e�

bm
Lð Þ

2
þ gn

Wð Þ2
� �

at

� �

ð4aÞ
where

IY n ¼
Z W

y0¼0

f ðy0ÞY nðy0Þdy0 ð4bÞ

The solution given by Eq. (4a) can be written in the form

T ðx;y; tÞ¼

1
k H 1

P1
m¼0

P1
n¼0

X mðxÞX mð0ÞY nðyÞIY n

Nx;mNy;n
bm
Lð Þ

2
þ gn

Wð Þ2
� �

� 1
k H 1

P1
m¼0

P1
n¼0

X mðxÞX mð0ÞY nðyÞIY n

Nx;mNy;n
bm
Lð Þ

2
þ gn

Wð Þ2
� �e�

bm
Lð Þ

2
þ gn

Wð Þ2
� �

at

8>><
>>:

9>>=
>>;
ð5Þ

This solution has two major components. The first is the
steady-state or quasi-steady component and second is the
complementary transient. The more difficult part to evalu-
ate numerically is the steady-state component. It converges
algebraically while the complementary transient converges
exponentially.
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We wish to reduce the double summation to a single
summation in the steady-state component by using the fol-
lowing procedure: identify a 1D problem that has a series
solution identical to one sum in the double-sum 2D solu-
tion; solve this 1D problem to obtain an algebraic solution;
and, substitute this algebraic solution for one summation.
This procedure can be used to obtain two different single-
summation solutions which are equivalent mathematically
but they usually converge properties quite differently. In
the next section a 1D transient problem along the y-direc-
tion is examined as part of this procedure; it produces the
non-standard solution.

3. Non-homogeneous direction 1D eigenvalue problem
(non-standard solution)

We now obtain a 1D solution from Eq. (2) by replacing
one of the GFs by a time dependent term of that series.
That can be done for either of the two GFs to obtain
two different 1D problems. Consider now a 1D problem
in the y-direction that is formed by replacing GXIJ in
Eq. (2) with a typical transient term, expð�b2

maðt � sÞ=
L2Þ. This analysis results in the eigenvalues in the final sin-
gle summation being associated with the non-homogeneous
direction and thus is nonstandard. It is convenient to divide
GXIJ by W since the GF has units of reciprocal length. The
result is

T ðy; tÞ¼ a
k

H 1

Z t

s¼0

e�
bm
Lð Þ

2
aðt�sÞ

W

Z W

y0¼0

f ðy0ÞGYKLðy;y 0; t� sÞdy 0ds

¼ a
k

H 1

W
e�

bm
Lð Þ

2
at
Z t

s¼0

Z W

y0¼0

e
bm
Lð Þ

2
asf ðy 0ÞGYKLðy;y 0; t� sÞdy 0ds

ð6Þ
The second line of Eq. (6) is recognized as expð�b2

mat=L2Þ
multiplied by a temperature. This temperature, denoted
T 0 below, is for a volumetric energy generation problem.
(see the second line of Eq. (3.16) of [12]). The two bound-
ary conditions are homogeneous and are of the Kth kind at
y = 0 and of the Lth kind at y = W. Both K and L can go
from 1 to 3, for a total of nine cases. The volume energy
generation (with units of W/m3) for T 0 is exponentially
increasing in time as

g ¼ H 1

W
e

bm
Lð Þ

2
atf ðyÞ ð7Þ

The 1D conduction equation driven by this heating term is

o
2T 0

oy2
þ H 1=W

k
f ðyÞe

bm
Lð Þ

2
at ¼ 1

a
oT 0

ot
;

T 0ðy; tÞ ¼ eð
bm
L Þ

2atT ðy; tÞ ð8Þ

This case is described by the notation YKLB00G(y�t4)T0.
The boundary conditions are identical to the homogeneous
boundary conditions from the original 2D problem (Kth
kind at y = 0 and Lth kind at y = W). The GF solution
(using the long cotime form) for this problem may be writ-
ten [12, p.43]

T 0ðy; tÞ ¼ a
k

H 1

W
eð

bm
L Þ

2at

Z t

u¼0

X1
n¼0

e�
bm
Lð Þ

2
aue�g2

n
au

W 2
Y nðyÞIY n

Ny;n
du

¼ 1

k
H 1

W
e

bm
Lð Þ

2
at
X1
n¼0

Y nðyÞIY n

Ny;n
bm
L

� �2 þ gn
W

� �2
h i

� 1� e�
bm
Lð Þ

2
þ gn

Wð Þ2
� �

at

� �
ð9Þ

Note that the summation above is identical in form to that
in the 2D solution given by Eq. (4a). A main difference is
the multiplication by an exponentially increasing function
of time.

To isolate the summation from that multiplicative term,
consider the following transformation:

T 0ðy; tÞ ¼ H 1W
k

eð
bm
L Þ

2athmðy; tÞ ð10Þ

Introducing this equation into Eq. (8) gives

o
2hm

oðyþÞ2
þ f ðyÞ ¼ W 2

a
ohm

ot
þ C2

mhm ð11Þ

where y+ = y/W and Cm = bmW/L. The dimensionless
quantity hm has a steady-state solution which is the one
we seek. The steady-state describing equation for hm is

d2hm

dðyþÞ2
� C2

mhm þ f ðyÞ ¼ 0 ð12Þ

The function hm satisfies homogeneous boundary condi-
tions corresponding to the Kth kind at y = 0 and Lth kind
at y = W (identical to the original 2D temperature prob-
lem). Several methods are available to solve this second-
order ordinary differential equation for hm. However, it is
convenient to use symbolic manipulation software. We will
show later that the steady 1D GF can also be used. The
important point is that a non-series solution can be found
for hm(y), in the form of an algebraic expression for simple
f(y) functions. Expressions for hm(y) for f(y) = 1 are given
in Appendix A. A comparison between Eqs. (9) and (10)
indicates that hm(y) can be written in the series form of

hmðyÞ ¼
1

W 2

X1
n¼0

Y nðyÞIY n

N y;n
bm
L

� �2 þ gn
W

� �2
h i ð13Þ

which is dimensionless. Now examine the steady-state com-
ponent of Eq. (5) to isolate the series form of hm(y) given by
Eq. (13)

T ðx;yÞ¼
X1
m¼0

H 1W 2

k
1

W 2

X1
n¼0

Y nðyÞIY n

Ny;n
bm
L

� �2þ gn
W

� �2
h i

8<
:

9=
;X mðxÞX mð0Þ

N x;m

ð14aÞ

Finally, replace the series form of hm(y) by the non-series
form to get
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T ðx; yÞ ¼ H 1W 2

k

X1
m¼0

hmðyÞ
X mðxÞX mð0Þ

N x;m
ð14bÞ

The double sum for the 2D steady temperature is replaced
by a single sum. This result has eigenfunctions in the non-
homogeneous direction. Hence it is a non-standard result.
The above development involved a non-homogeneous
boundary of the second or third kind at x = 0, but a similar
approach is used for a boundary condition of the first kind.

The result given by Eq. (14b) can be obtained using
other methods, but this method produces a small number
of general identities that can be used for many cases,
including 3D problems. A general result is given in Appen-
dix A which is

hmðyÞ¼
1

C2
m

1�
DB1 e�Cmyþ þD2e�Cmð2�yþÞ� �

þDB2 e�Cmð1�yþÞ þD1e�Cmð1þyþÞ� �
1�D1D2e�2Cm

" #

Dj ¼ðCm�BijÞ=ðCmþBijÞ; DBj¼Bij=ðCmþBijÞ; j¼ 1;2

ð15Þ
where Bi1 = hy1W/k, Bi2 = hy2W/k and the heat transfer
coefficients, hy1 and hy2, are at y = 0 and W, respectively.
Table 1 lists the D coefficients for K, L = 1, 2, 3 (nine
cases), which have values in the intervals �1 6 Dj 6 1
and 0 6 DBj 6 1. Also note the last column of this table;
it provides simple expressions for the limiting cases of Cm

going to zero. Notice that although the eigenvalues in the
series for boundary conditions of the third kind (see Eq.
(A.3)) are not easy to evaluate, no eigenvalues are required
using Eq. (15). The range of the hm(y) values is from zero to
infinity; however, only the YF22, YF23, YF32 and YF33
cases have values greater than one. As m is increased in va-
lue, Cm increases and the hm(y) numerical values decrease.
A plot of the limiting cases is given in Fig. 1 as a function
of y+; for cases requiring a Biot value, Bi = 1 is selected.
Another important point regarding Eq. (15) is that each
case contains additive term 1=C2

m which represents a 1D
component in the solution and aids in convergence of the
series.

A specific example is given next to demonstrate the
method. Consider case X21B10Y21B00T0, which includes
a boundary condition of the second kind at y = 0 and of
Table 1
Coefficients for special cases coming from case YF33B00G1 given by Eq.
(A.4)

Number D1 DB1 D2 DB2 limCm!0hmðyþÞ
YF11 �1 1 �1 1 (y+/2)(1 � y+)
YF12 �1 1 1 0 (y+/2)(2 � y+)

YF13 �1 1 D2 DB2
yþ

2
2�yþþBi2ð1�yþÞ

1þBi2

YF21 1 0 �1 1 1
2 ð1� ðyþÞ

2Þ
YF22 1 0 1 0 1
YF23 1 0 D2 DB2

1
2 ð1� ðyþÞ

2Þ þ 1
Bi2

YF31 D1 DB1 �1 1 1�yþ

2
1þyþþBi1yþ

1þBi1

YF32 D1 DB1 1 0 yþ

2 ð2� yþÞ þ 1
Bi1

YF33 D1 DB1 D2 DB2 For Bi1 ¼ Bi2 ¼ Bi : yþ

2 1� yþð Þ þ 1
2Bi
the first kind at x = L and y = W. The heat flux is uniform
over the x = 0 surface so that f(y) = 1. The needed solution
for hm(y) is case YF21B00G1in Appendix A. (Notice the
common element of Y21B00 in the notation with
X21B10Y21B00T0.) The expression for hm(y) is

hmðyÞ ¼
1

C2
m

1� e�Cmð1�yþÞ þ e�Cmð1þyþÞ

1þ e�2Cm

� 	
ð16Þ

It is important to observe that this same expression can be
used for many other cases. For example, the X21B10 could
be replaced by XIJB10 or XIJB01 where I and J can be 1, 2
and 3. Introducing Eq. (16) for hm(y) into Eq. (14b) and
using the eigenfunctions for the X21 problem gives the
non-standard result of
T ðx;yÞ¼ q1L
k

2
X1
m¼1

1�e�bm
W
L ð1�yþÞ þe�bm

W
L ð1þyþÞ

1þe�2bm
W
L

" #
cosðbmxþÞ

b2
m

¼ q1W
k

L
W

1�xþ�2
X1
m¼1

e�bm
W
L ð1�yþÞ þe�bm

W
L ð1þyþÞ

1þe�2bm
W
L

cosðbmxþÞ
b2

m

( )

ð17aÞ

where the following identity is used:

2
X1
m¼1

cosðbm
x
LÞ

b2
m

¼ 1� x
L
; bm ¼ m� 1

2

� �
p ð17bÞ

Eq. (17a) converges exponentially for all values of x+ and
all values of y+ provided y+ is not near 1. A conservative
limit of the maximum number of series terms needed to ob-
tain a given accuracy is to require the smallest magnitude
exponent in the numerator of Eq. (17a) to be less than
some value. For example, to obtain exp(�R) = A with
A = 10�5 and 10�10, requires exponent values R = 11.5
and 23, respectively. From Eq. (17a) we obtain
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mmax �
1

2

� �
p

W
L
ð1� yþÞ ¼ R;

mmax ¼
R

pð1� yþÞ
L
W
þ 1

2
ð18aÞ

Note that more terms are needed as L/W is increased. For
R = 11.5 and L/W = 1, the maximum number of terms is

mmax ¼
3:66

1� yþ
þ 1

2
ð18bÞ

If y+ = 0, only four terms in the summation is needed to
obtain relative accuracies of better than 10�5. Surprisingly
for accuracies to 10�10, only seven terms are needed for
y+ = 0. That means that the error divided by 100,000 re-
quires only about twice as many terms, which is a demon-
stration of exponential convergence.
4. Homogeneous direction 1D eigenvalue problem (standard

solution)

A similar method is used to obtain a result which is iden-
tical to that produced by the standard SOV procedure
which produces a single summation with the eigenvalues
directed in the homogeneous direction. We now replace
the double sum of the 2D problem given by Eq. (2) with
a single sum for a 1D problem in the x-direction. That is
accomplished by replacing GYKL in Eq. (2) with a typical
transient term, expð�g2

naðt � sÞ=W 2Þ

T 1Dðx; tÞ ¼
a
k

H 1

Z t

s¼0

GXIJ ðx; 0; t � sÞe�
gn
Wð Þ2aðt�sÞ ds

¼ a
k

H 1e�
gn
Wð Þ2at

Z t

s¼0

GXIJ ðx; 0; t � sÞeð
gn
W Þ

2as ds ð19Þ

The solution in the second line is the temperature for an
exponentially increasing heat flux boundary condition at
x = 0; it is also multiplied by a decaying exponential. Let
the solution without the decaying exponential be termed
T0. The boundary condition of the second kind at x = 0
is described mathematically by

�k
oT 0

ox
ð0; tÞ ¼ q1eð

gn
W Þ

2at ð20aÞ

This problem is denoted X2JB40T0, where the ‘‘4” denotes
an exponential variation. If instead the boundary condition
is the third kind at x = 0, we have
�k
oT 0

ox
ð0; tÞ ¼ h1 T1eð

gn
W Þ

2at � T 0ð0; tÞ

 �

ð20bÞ
This problem is denoted X3JB40T0. Both of these prob-
lems, Eqs. (20a) and (20b) have an exponentially-increasing
temporal boundary condition at x = 0. For both cases we
can write the formal solution:
T 0XIJB40T 0ðx; tÞ ¼
a
k

H 1

Z t

s¼0

eð
gn
W Þ

2asGXIJ ðx; 0; t � sÞds

¼ a
k

H 1eð
gn
W Þ

2at

Z t

u¼0

e�
gn
Wð Þ2auGXIJ ðx; 0; uÞdu;

u ¼ t � s ð21Þ

The solution using the long cotime GF is

T 0XIJB40T 0ðx; tÞ ¼
1

k
H 1eð

gn
W Þ

2at

�
X1
m¼0

X mðxÞX mð0Þ
N x;m

bm
L

� �2þ gn
W

� �2
h i 1� e�

bm
Lð Þ

2
þ gn

Wð Þ2
� �

at

� �

ð22Þ

where H1 = q1 for boundary conditions of the second kind
and H1 = h1T1 for boundary conditions of the third kind.
The 1D solution given by Eq. (22) has quasi-steady and
complementary transient components. Both parts are pro-
portional to expðg2

nat=W 2Þ. The quasi-steady-state part is
given by the product of this exponential function of time
multiplied by a spatial function in series form. To isolate
the spatial function, apply the following transformation:

T 0ðx; tÞ ¼ H 1L
k

eð
gn
W Þ

2at/nðx; tÞ ð23Þ

The 1D transient heat conduction equation is

o2T 0

ox2
¼ 1

a
oT 0

ot
ð24Þ

By using the transformation given by Eq. (23) the heat
conduction equation becomes

o
2/n

oðxþÞ2
¼ 1

a
o/n

ot
þ C2

n/n ð25Þ

where x+ = x/L and Cn = gnL/W. Eq. (25) describes tran-
sient heat conduction in a fin, with XFIJ where the F de-
notes fin. A fin aligned with the x-axis has primary heat
conduction along x with sideways-directed heat loss de-
scribed by the ‘‘fin” term C2

n/n in Eq. (25). The physical
connection to the 2D problem is that the ‘‘side” losses
are associated with the boundary conditions at y = 0 and
y = W which cause the exact character of the y-direction
eigenvalue gn.

It is now the objective to find the steady-state solution to
this fin problem. The steady-state form of Eq. (25) is

d2/n

dðxþÞ2
¼ C2

n/n ð26Þ

When the boundary condition is of the second kind, Eq.
(20a) is transformed to

� d/n

dxþ
ð0; tÞ ¼ 1 ð27aÞ

The boundary condition at x = L is homogeneous; what-
ever kind it is in T, it is the same in /n. If the boundary
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condition given by Eq. (27a) is present and /n = 0 at x = L,
the notation for /n is XF21B10.

If the boundary condition at x = 0 is of the third kind,
transform Eq. (20b) to obtain

� d/n

dxþ
ð0; tÞ ¼ 1� Bi1/nð0; tÞ; Bi1 ¼

h1L
k

ð27bÞ

The important point is that /n satisfies an ordinary differ-
ential equation which may be solved by non-series means.
Solutions for some steady-state /n problems are given in
Appendix B. For example, for case XF11B10, the /n func-
tion is given by

/n ¼
e�Cnxþ � e�Cnð2�xþÞ

1� e�2Cn
ð28aÞ

and H1L/k in Eq. (23) is replaced by the surface tempera-
ture at x = 0 which can be denoted as T0. Another case is
for a constant heat flux at x = 0 and a zero temperature
at x = L, denoted XF21B10, which has the /n function

/n ¼
1

Cn

e�Cnxþ � e�Cn 2�xþð Þ

1þ e�2Cn
ð28bÞ

Suppose an algebraic expression for /n has been
obtained. Then the quasi-steady-state part of Eq. (22)
equated to Eq. (23) yields

1

L
eð

gn
W Þ

2at
X1
m¼0

X mðxÞX mð0Þ
N x;m

bm
L

� �2 þ gn
W

� �2
h i ¼ eð

gn
W Þ

2at/nðxÞ ð29aÞ

Then the single summation in Eq. (29a) can be given as

1

L

X1
m¼0

X mðxÞX mð0Þ
Nx;m

bm
L

� �2 þ gn
W

� �2
h i ¼ /nðxÞ ð29bÞ

The non-series form on the right of this equation, /n(x), is
then used to reduce the 2D GF double-summation to a sin-
gle-summation. This procedure has the effect of having the
eigenvalue problem aligned in the homogeneous direction
and also having the hyperbolic functions in the direction of
the non-homogeneous boundary condition. It gives the same
result as the standard separation of variables approach.

To better compare the final solutions using the two
different methods, consider the steady-state of the
X21B10Y21B00T0 example, solved in Section 3. Eq. (14a)
can also be written in the form

T ðx; yÞ ¼
X1
n¼1

q1L
k

1

L

X1
m¼1

X mðxÞX mð0Þ
Nx;m

bm
L

� �2 þ gn
W

� �2
h i

8<
:

9=
; Y nðyÞIY n

Ny;n

¼ q1L
k

X1
n¼1

/n
Y nðyÞIY n

N y;n
ð30aÞ

where Eq. (28b) is used. Now for the Y21 case, we have [12,
p. 99]

Y Y 21ðyÞ ¼ cosðgnyþÞ; gn ¼ ðn� 1=2Þp;
Ny;n ¼ W =2; IY Y 21 ¼ ð�1Þnþ1W =gn ð30bÞ
Using Eq. (30b) in Eq. (30a) and also using Eq. (28b) yields
the standard result of

T ðx; yÞ ¼ 2
q1L
k

X1
n¼1

1

gnL=W
e�gn

L
W xþ � e�gn

L
W ð2�xþÞ

1þ e�2gn
L
W

( )

� cosðgnyþÞð�1Þnþ1

gn

¼ 2
q1W

k

X1
n¼1

e�gn
L
W xþ � e�gn

L
W ð2�xþÞ

1þ e�2gn
L
W

cosðgnyþÞð�1Þnþ1

g2
n

ð31Þ

Analogous to Eq. (18a), the required number of terms is

nmax ¼
R
p

W
L

1

xþ
þ 1

2
ð32Þ

This equation indicates that the number of terms goes to
infinity as x+ goes to zero; that is not correct because Eq.
(31) is also divided by g2

n.which gives a very slow algebraic
convergence as x+ goes to zero. When the heat flux at x+ at
or near zero is needed, the convergence is extremely poor;
to demonstrate this point, using Eq. (31) the heat flux at
x+ = 0 is

qxð0; yþÞ
q1

¼
X1
n¼1

ð�1Þnþ1 cosðgnyþÞ
gn

ð33Þ

Numerical values are discussed below. Since Eq. (33) con-
verges poorly at x = 0 which is the heated surface and the
most important one, Eq. (31) is inferior to Eq. (17a) in that
respect. More details on the convergence are given in the
next section.

5. Comparison of numerical values

In this section numerical and graphical results are given
to compare the two methods of solution for the
X21B10Y21B00 steady-state example. Table 2 is a tabula-
tion of numerical values for Eqs. (17a) and (31). The first
column is the L/W aspect ratio; the next two columns give
the location of the point; the fourth column gives the num-
ber of terms used in the series; and the last two columns give
the dimensionless temperatures based on the W dimension.
The non-standard solution, Eq. (17a), is in the fifth column;
the standard solution. Eq. (31), is in the sixth column. Inac-
curate digits are underlined. Some points are now made.

The first point is that intrinsic verification [11] can be
observed. The forms of the two summations are different
and yet give the same (to 10 digits) converged numerical
values. The location x+ = y+ = 0.5 for L/W = 1 is a good
point to consider since it does not favor either equation.
Slightly over 10 terms in the summation produce the same
numerical value of 0.2039147754 which thus has a high
probability of being correct and is an indication of intrinsic
verification.

The second point is that the Eq. (17a) values (the non-
standard solution) for x+ = 0 converge much more rapidly



Table 2
Numerical values for the temperatures given by Eqs. (17a) and (31), non-standard and standard equations, respectively

L
W

x
L

y
W

No. terms Nonstandard Standard

T ðx; yÞ
q1W =k

����
Eq: ð17aÞ

T ðx; yÞ
q1W =k

����
Eq: ð31Þ

1.00 0.000 0.000 1 0.6769582252 0.7434156818
1.00 0.000 0.000 10 0.6753144833 0.6743087186
1.00 0.000 0.000 1000 0.6753144833 0.6753143820
1.00 0.000 0.500 10 0.5627669828 0.5641698500
1.00 0.000 0.500 100 0.5627669827 0.5627526569
1.00 0.000 0.500 1000 0.5627669827 0.5627668394
1.00 0.000 0.999 100 0.0060075818 0.0040709778
1.00 0.000 0.999 1000 0.0050842784 0.0051293631
1.00 0.000 0.999 10000 0.0050824646 0.0050818234
1.00 0.000 0.999 COND3D 0.005082464593
1.00 0.500 0.000 10 0.2727364660 0.2727364659
1.00 0.500 0.000 30 0.2727364660 0.2727364660
1.00 0.500 0.500 10 0.2039147753 0.2039147755
1.00 0.500 0.500 30 0.2039147754 0.2039147754
1.00 0.500 1.000 10 �0.0001362128 0.0000000000
1.00 0.500 1.000 1000 0.0000000001 0.0000000000
0.20 0.000 0.000 1 0.1998741338 0.2465883580
0.20 0.000 0.000 1000 0.1998741338 0.1998740324
5.00 0.000 0.000 100 0.7424535011 0.7424433698
7.50 0.000 0.000 100 0.7424537453 0.7424436140
10.00 0.000 0.000 100 0.7424537454 0.7424436141
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Fig. 2. Absolute values of the errors in the dimensionless temperatures for
the X21B10Y21B00 steady-state example at x+ = 0 and L/W = 1 versus
the number of terms in the series. The non-standard results are obtained
from Eq. (17a). The standard results are from Eq. (31) and oscillate in sign
while the non-standard results do not.
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than for Eq. (31). See rows 1–9. As expected, Eq. (17a)
converges more slowly as y+ goes to the value of one.
The difficult case of y+ = 0.999 is displayed in rows 7–9
with a comparison of the results given by COND3D [13].
(COND3D is a 3D code for parallelepipeds that uses
time-partitioning.) The Eq. (17a) results indicate accuracy
to as many digits as given when successive values are the
‘‘same.” The time-partitioning method used in COND3D
indicates accuracy to as many digits as agree when two dif-
ferent (but acceptable) dimensionless partition times are
used. (The two values used are atp /L2 = 0.02 and 0.05.)
The Eq. (17a) value agrees to as many digits as shown.
The use of as many terms as 10,000 to get 10 decimal-place
accuracy is acceptable. However, the time-partitioning
method has an advantage because it uses the same small
number of terms in the long cotime component of the solu-
tion regardless of the x+ and y+ values. An advantage of
the method in the present paper is that the cumbersome
short-cotime GFs are not needed.

A third point is that the only case in Table 2 for which
Eq. (31) is superior is for y+ = 1; in this case the exact value
is known to be zero and need not be calculated. Finally
some results are given at the point x+ = y+ = 0 for aspect
ratios other than one. For small values of L/W conver-
gence is obtained very quickly for Eq. (17a) as can be
inferred from Eq. (18b); see the L/W = 0.2 rows in Table
2. As the aspect ratio becomes greater than about 5, the
values approach the constant value of 0.7424537454.

A plot of the absolute value of the errors in the dimen-
sionless temperature at x+ = 0 is given by Fig. 2. The
non-standard solution errors, Eq. (17a), are considerably
smaller than for standard solution errors, Eq. (31); many
of the errors fluctuate in sign but the non-standard curve
for y+ = 0 does not. Fig. 3 displays similar plots for x+ =
0.5. In this plot the curves labeled ‘‘Standard results” have
errors that are independent of the y/W locations from 0 to
0.9; the non-standard curve for y+ = 0.5 is along the same
line. This figure shows that the standard equation, Eq. (31),
for x+ = 0.5 and for y+ greater than 0.5 converges more
rapidly than the non-standard equation. However, if
only one solution is desired for the steady-state, the
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Fig. 3. Absolute values of the errors in the dimensionless temperatures for
the X21B10Y21B00 steady-state example at x+ = 0.5 and L/W = 1 versus
the number of terms in the series. The non-standard results are obtained
from Eq. (17a). The standard results are from Eq. (31).

10 15 20 25 30 35 40 45 50
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Number of terms in series

q x(0
,y

)/
q 1 g

iv
en

 b
y 

E
q.

 (
33

)

y+=0

y+=0.5

y+=0.75

Fig. 4. Heat flux components for the standard equation, Eq. (33), for
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non-standard equation is clearly the better to use. This
point is re-enforced by Fig. 4 which shows results for the
heat flux at x+ = 0 for the standard solution given by Eq.
(33). These values oscillate with the number of terms and
very gradually decrease. This is in contrast with the exact
heat flux obtained from Eq. (17a) for which the summation
is zero at x+ = 0.

6. Equivalent approach: steady 1D GF

In this section an approach is given that is based on
steady-state one-dimensional GFs. This approach provides
an additional perspective for further insight into the prob-
lem. The final results are identical to those already
discussed.

Consider the steady-state portion of the original two-
dimensional problem, case XIJB(y-)0YKLB00T0, for
I = 2 or 3. The steady-state portion of the solution is given
by

T ðx; yÞ ¼
X

m

X
n

X mðxÞX mð0Þ
Nx;m

W
H 1

Wk
Y nðyÞIY n

Ny;n
b2

m
L2 þ g2

n
W 2

h i
2
4

3
5 ð34Þ

The elements of the double sum have been arranged to iso-
late terms that are associated with the x- and y-directions.

6.1. Steady GF solution along y (non-standard solution)

Consider the summation over n, shown in brackets in
the above equation, to be the solution of a one-dimensional
steady problem along the y-direction. This 1D steady prob-
lem may be formally stated with a GF solution [12, p. 66]

T ðyÞ ¼ H 0

k

Z W

y0¼0

f ðy0Þ
W

Gðy; y0Þdy 0 ð35Þ

This is the steady one-dimensional temperature caused by
internal heating of the form g = H0f(y)/W. By comparing
this 1D GF solution with the term in brackets in Eq.
(34), the associated one-dimensional steady GF must have
the following form:

Gðy; y 0Þ ¼
X

n

Y nðyÞY nðy 0Þ
Ny;n

b2
m

L2 þ g2
n

W 2

h i ð36Þ

where Yn(y) is an eigenfunction that satisfies Y 00nþ
ðgn=W Þ2Y n ¼ 0 and appropriate homogeneous boundary
conditions at y = 0 and y = W (of the same kind as the
original 2D problem).

The above GF satisfies the heat conduction equation for
a steady fin:

d2G
dy2
� bm

L

� �2

Gþ dðy � y0Þ ¼ 0 ð37Þ

To show that the GF given in Eq. (36) satisfies the above
fin equation, differentiate the GF and substitute it into
the fin equation, along with the following series form for
the Dirac delta function

dðy � y0Þ ¼
X

n

Y nðyÞY nðy0Þ
N y;n

ð38Þ

Then the fin equation, Eq. (37), becomes

X
n

Y nðyÞY nðy0Þ
Ny;n

� ðgn=W Þ2
b2

m
L2 þ g2

n
W 2

h i� ðbm=LÞ2
b2

m
L2 þ g2

n
W 2

h iþ 1

8<
:

9=
; ¼ 0 ð39Þ

This equation is satisfied for all n, demonstrating that the
GF in Eq. (36) satisfies the fin equation.

The next step is to solve the 1D steady heat conduction
problem by non-series means. The steady GF method can
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be used for this, because the GF is available in an alternate,
non-series form.

The GF for the steady-fin cases along the y-direction are
designated YFKL where K, L, = 1,2,3. The GF for these
geometries may be stated in the form of hyperbolic sines
and cosines [12, p. 479] or equivalently as exponentials,
given by [23]

Gðy; y0Þ ¼ W
S�2 ðS�1 e�Cmð2�jy�y0Þj=W þ Sþ1 e�Cmð2�ðyþy0Þ=W ÞÞ

2CmðSþ1 Sþ2 � S�1 S�2 e�2CmÞ

þ W
Sþ2 ðSþ1 e�Cmjy�y0 j=W þ S�1 e�Cmðyþy0Þ=W Þ

2CmðSþ1 Sþ2 � S�1 S�2 e�2CmÞ ð40Þ

Recall that Cm = bmW/L. The coefficients depend on the
type of boundary conditions at boundaries j = 1,2 and
are given by

Sþj ¼
1 side j is kind 1 or 2

Cm þ Bij side j is kind 3

(

S�j ¼
�1 side j is kind 1

1 side j is kind 2

Cm � Bij side j is kind 3

8><
>:

ð41Þ

Here Bij = hjW/k is the Biot number at boundary j.
These steady one-dimensional GF may be applied to

find the steady temperature. Consider a specific example.
For steady case YF11B00G1 the GF is given by (use
Sþj ¼1 and S�j ¼ �1Þ

GYF 11¼W
e�Cmð2�jy�y0 j=W Þ � e�Cmð2�ðyþy0Þ=W Þ þ e�Cm jy�y0 j=W � e�Cmðyþy0Þ=W

2Cmð1� e�2CmÞ
ð42Þ

and the one-dimensional temperature for f(y) = 1 is given
by

T ðyÞ ¼ H 1

k

Z W

y0¼0

f ðy 0Þ
W

GYF 11ðy; y 0Þdy 0

¼ H 1W
k

1

C2
m

1� e�Cmyþ þ e�Cmð1�yþÞ

1þ e�Cm

� 	
ð43Þ

The final step is to substitute the steady 1D temperature,
found by non-series means, into the steady 2D solution to
replace one of the summations. The results from the 1D
GF approach described here are identical to those from
the hm procedure described earlier. The relationship between
the 1D GF method and the earlier development is a simple
proportionality, TFIN = hmH1W/k. Thus, the use of steady
1D GF provides another way to find quantity hm, some of
which are listed in Appendix A.

6.2. Steady GF solution along x (standard solution)

A similar development can be carried out along the x-
direction to obtain an alternate single-sum form of the
steady 2D solution. Returning to the double-sum steady
solution, slightly rearranged

T ðx; yÞ ¼
X1
m¼0

X1
n¼0

H 1

k
X mðxÞX mð0Þ

Nx;m
b2

m
L2 þ g2

n
W 2

h i
2
4

3
5 Y nðyÞIY n

Ny;n
ð44Þ

Consider the sum over m and the term in braces as though
it were associated with a one-dimensional solution along x.
This one-dimensional steady problem along the x-direc-
tion, with a non-homogeneous boundary condition at
x = 0 of type 2 or 3, may be formally stated with the GF
solution:

T ðxÞ ¼ H 1

k
Gðx; x0 ¼ 0Þ ð45Þ

By comparison with the sum over n in the 2D solution, the
steady GF must have the form:

Gðx; x0Þ ¼
X

m

X mðxÞX mðx0Þ
Nx;m

b2
m

L2 þ g2
n

W 2

h i ð46Þ

This is a fin-type steady GF along the x-axis which satisfies

d2G
dx2
� gn

W


 �2

Gþ dðx� x0Þ ¼ 0 ð47Þ

These steady-fin GF have a non-series form, completely
analogous to the y-direction form given earlier; simply
replace Cm by Cn, replace y by x, and replace W by L in
Eq. (40). Then, the 1D steady, non-series temperature solu-
tion in the x-direction may be sought using the steady-fin
GF in a manner completely analogous to the y-direction
steady-fin GF discussion given above. The only difference
is that the appropriate non-homogeneous boundary condi-
tion at x = 0 must be used.

Finally, the steady-fin temperature solution may be
substituted into the 2D steady solution to replace one
of the summations. The results are identical to the /n deve-
lopment given earlier. Thus, the steady GF method pro-
vides an alternate method to find functions /n listed in
Appendix B.

6.3. Green’s function library and software TFIN

The one-dimensional steady-fin GF given in Eq. (37) are
also available at the internet site called the Green’s Func-
tion Library [24,25]. Individual expressions are given for
the nine GF denoted XFIJ for I = 1,2,3 and J = 1,2,3.
In addition, analytical expressions for the fin temperature
using the steady-fin GF may be viewed on-line with inter-
active software TFIN [23]. Software TFIN displays tem-
perature expressions, computed interactively based on
user-supplied input values, in the form of MathML expres-
sions (if the web browser is configured appropriately). The
displayed MathML expressions may be copied and pasted
into commercial mathematics software for evaluation, plot-
ting, etc.
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7. Conclusions

Standard separation of variable (SOV) solutions for
rectangles heated at a boundary (and in 3D, for parallel-
epipeds) have poor numerical behavior near the heated
boundary, which is often the location of greatest interest.
This convergence problem associated with standard SOV
solutions has not been directly addressed in any of the
advanced heat conduction books (of which we aware,
including ours) published over the last five decades. This
paper describes a new procedure for developing alternate
temperature expressions that have better convergence
behavior near the heated boundary.

One new procedure involves only the long-cotime
Green’s function (GF), making this approach analytically
easier than the time-partitioning method for improving
convergence, which involves both long-cotime and short-
cotime GF. This procedure also provides a way to con-
struct fully-summed forms of certain series expressions,
and several examples are given. Another and equivalent
procedure is based on steady-state GFs. The solutions
developed in this paper can be used along with the stan-
dard SOV solutions for checking of numerical values,
which we call intrinsic verification, in regions where both
solutions are convergent.

Tabulations of algebraic forms for single-summations
are given for both the non-standard and standard formu-
lations of the exact solution of the steady-state heat con-
duction in a rectangle. Appendix A gives the identities for
the non-standard formulation and Appendix B for the
standard formulation; in both cases the boundary condi-
tion is considered to be uniform over the non-homoge-
neous surface. Although this paper gives methods for
deriving these identities, derivations of these known iden-
tities need not be repeated. Consequently, the analytical
solution of many related problems is considerably simpli-
fied. Although the analysis is for the rectangle with
non-homogeneous boundary conditions, the method can
be extended to other geometries such parallelepipeds
and cylinders and to also include volumetric energy
generation.
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Appendix A

Solutions used in the non-standard solution. There are
nine cases for a fin-type steady-state equation, XFIJB00G1,
with a constant volumetric energy source. The des-
cribing ode is Eq. (12) with f(y) = 1 and homogeneous
boundary conditions. The series is given by Eq. (13). Cm =
bmW/L
YF11B00G1

hmðyÞ ¼ 2
X1
n¼1

½sinðgnyþÞ�½1=gn�
1
2


 �
ðC2

m þ g2
nÞ

¼ 1

C2
m

1� e�Cmyþ þ e�Cmð1�yþÞ

1þ e�Cm

� 	
;

gn ¼ ð2n� 1Þp ðA:1Þ

YF12B00G1. For YF21B00G1, replace y+ by ð1� yþÞ;
gn ¼ n� 1

2

� �
p.

hmðyÞ ¼
X1
n¼1

½sinðgnyþÞ�½ð1� cosðgnÞÞ=gn�
1
2


 �
ðC2

m þ g2
nÞ

¼ 1

C2
m

1� e�Cmyþ þ e�Cmð2�yþÞ

1þ e�2Cm

� 	
ðA:2Þ

YF33B00G1

hmðyÞ¼
X1
n¼1

½gn cos gn
y
W

� �
þBi1 sin gn

y
W

� �
�½sinðgnÞþ Bi1

gn
ð1� cosðgnÞÞ�

1
2
ðg2

nþBi2
1Þ
h
1þ Bi2

g2
nþBi2

2

i
þBi1


 �n o
ðg2

nþC2
mÞ

tanðgnÞ¼
gnðBi1þBi2Þ
g2

n�Bi1Bi2

; Bi1¼
h1W

k
; Bi2¼

h2W
k

ðA:3Þ

hmðyÞ¼
1

C2
m

1�DB1ðe�Cmyþ þD2e�Cmð2�yþÞÞþDB2ðe�Cmð1�yþÞ þD1e�Cmð1þyþÞÞ
1�D1D2e�2Cm

� 	
Dj¼ðCm�BijÞ=ðCmþBijÞ; DBj¼Bij=ðCmþBijÞ; j¼ 1;2

ðA:4Þ
Appendix B

Solutions for a standard solution. They are for a fin-type
steady-state equation, XFIJB10, which has 18 possible
cases, 9 combinations of boundary conditions for 2 sur-
faces. The describing differential equation is

d2/n

dðxþÞ2
¼ C2

n/n; xþ ¼ x
L
; Cn ¼ gn

L
W

Various boundary conditions are considered:

XF 11B10: /n ¼
e�Cnxþ � e�Cnð2�xþÞ

1� e�2Cn
;

XF 11B01: /n ¼
e�Cnð1�xþÞ � e�Cnð1þxþÞ

1� e�2Cn
;

XF 12B10: /n ¼
e�Cnxþ þ e�Cnð2�xþÞ

1þ e�2Cn
;

XF 12B01: /n ¼
1

Cn

e�Cnð1�xþÞ � e�Cnð1þxþÞ

1þ e�2Cn
;

XF 13B10: /n ¼
e�Cnxþ þ D2e�Cnð2�xþÞ

1þ D2e�2Cn
;

XF 13B01: /n ¼ DR2

e�Cn 1�xþð Þ � e�Cnð1þxþÞ

1þ D2e�2Cn
;

D2 ¼ ðCn � Bi2Þ=ðCn þ Bi2Þ; DR2 ¼ 1=ðCn þ Bi2Þ;
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XF 21B10: /n ¼
1

Cn

e�Cnxþ � e�Cnð2�xþÞ

1þ e�2Cn
;

XF 21B01: /n ¼
e�Cnð1�xþÞ þ e�Cnð1þxþÞ

1þ e�2Cn
;

XF 22B10: /n ¼
1

Cn

e�Cnxþ þ e�Cnð2�xþÞ

1� e�2Cn
;

XF 22B01: /n ¼
1

Cn

e�Cnð1�xþÞ þ e�Cnð1þxþÞ

1� e�2Cn
;

XF 23B10: /n ¼
1

Cn

e�Cnxþ þ D2e�Cnð2�xþÞ

1� D2e�2Cn
;

XF 23B01: /n ¼ DR2

e�Cnð1�xþÞ þ e�Cnð1þxþÞ

1� D2e�2Cn
;

XF 31B10: /n ¼ DR1

e�Cnxþ � e�Cn 2�xþð Þ

1þ D1e�2Cn
;

XF 31B01: /n ¼
e�Cnð1�xþÞ þ D1e�Cnð1þxþÞ

1þ D1e�2Cn
;

D1 ¼ ðCn � Bi1Þ=ðCn þ Bi1Þ; DR1 ¼ 1=ðCn þ Bi1Þ;

XF 32B10: /n ¼ DR1

e�Cnxþ þ e�Cnð2�xþÞ

1� D1e�2Cn
;

XF 32B01: /n ¼
e�Cnð1�xþÞ þ D1e�Cnð1þxþÞ

Cnð1� D1e�2CnÞ ;

XF 33B10: /n ¼ DR1
e�Cnxþ þ D2e�Cn 2�xþð Þ

1� D1D2e�2Cn
;

XF 33B01: /n ¼ DR2

e�Cnð1�xþÞ þ D1e�Cnð1þxþÞ

ð1� D1D2e�2CnÞ :
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